所有分类
  • 所有分类
  • 未分类

分布式-雪花算法改进版-美团的Leaf

简介

说明

美团的Leaf用来生成全局的唯一ID,其中的Leaf-snowflake方案是雪花算法的改进版。

官网

github:https://github.com/Meituan-Dianping/Leaf

Leaf概述

Leaf是美团基础研发平台推出的一个分布式ID生成服务,名字取自德国哲学家、数学家莱布尼茨的著名的一句话:“There are no two identical leaves in the world”(世间不可能存在两片相同的叶子)。

Leaf 也提供了两种ID生成的方式,分别是 Leaf-segment 数据库方案和 Leaf-snowflake 方案。

美团的ecp-uid项目不但集成了百度现有的UidGenerator算法,原生的snowflake算法,还包含优秀的leaf segment算法

Leaf-segment 数据库方案

简介

在使用数据库的方案上,做了如下改变: 

  1. 原方案每次获取ID都得读写一次数据库,造成数据库压力大。改为利用proxy server批量获取,每次获取一个segment(step决定大小)号段的值。用完之后再去数据库获取新的号段,可以大大的减轻数据库的压力。 
  2. 各个业务不同的发号需求用biz_tag字段来区分,每个biz-tag的ID获取相互隔离,互不影响。如果以后有性能需求需要对数据库扩容,不需要上述描述的复杂的扩容操作,只需要对biz_tag分库分表就行。

数据库表设计如下:

+-------------+--------------+------+-----+-------------------+-----------------------------+
| Field       | Type         | Null | Key | Default           | Extra                       |
+-------------+--------------+------+-----+-------------------+-----------------------------+
| biz_tag     | varchar(128) | NO   | PRI |                   |                             |
| max_id      | bigint(20)   | NO   |     | 1                 |                             |
| step        | int(11)      | NO   |     | NULL              |                             |
| desc        | varchar(256) | YES  |     | NULL              |                             |
| update_time | timestamp    | NO   |     | CURRENT_TIMESTAMP | on update CURRENT_TIMESTAMP |
+-------------+--------------+------+-----+-------------------+-----------------------------+

重要字段说明:biz_tag用来区分业务,max_id表示该biz_tag目前所被分配的ID号段的最大值,step表示每次分配的号段长度。原来获取ID每次都需要写数据库,现在只需要把step设置得足够大,比如1000。那么只有当1000个号被消耗完了之后才会去重新读写一次数据库。读写数据库的频率从1减小到了1/step,大致架构如下图所示:

test_tag在第一台Leaf机器上是1~1000的号段,当这个号段用完时,会去加载另一个长度为step=1000的号段,假设另外两台号段都没有更新,这个时候第一台机器新加载的号段就应该是3001~4000。同时数据库对应的biz_tag这条数据的max_id会从3000被更新成4000,更新号段的SQL语句如下:

Begin
UPDATE table SET max_id=max_id+step WHERE biz_tag=xxx
SELECT tag, max_id, step FROM table WHERE biz_tag=xxx
Commit

这种模式有以下优缺点:

优点:

  • Leaf服务可以很方便的线性扩展,性能完全能够支撑大多数业务场景。
  • ID号码是趋势递增的8byte的64位数字,满足上述数据库存储的主键要求。
  • 容灾性高:Leaf服务内部有号段缓存,即使DB宕机,短时间内Leaf仍能正常对外提供服务。
  • 可以自定义max_id的大小,非常方便业务从原有的ID方式上迁移过来。

缺点:

  • ID号码不够随机,能够泄露发号数量的信息,不太安全。
  • TP999数据波动大,当号段使用完之后还是会hang在更新数据库的I/O上,tg999数据会出现偶尔的尖刺。
  • DB宕机会造成整个系统不可用。

双buffer优化

对于第二个缺点,Leaf-segment做了一些优化,简单的说就是:

Leaf 取号段的时机是在号段消耗完的时候进行的,也就意味着号段临界点的ID下发时间取决于下一次从DB取回号段的时间,并且在这期间进来的请求也会因为DB号段没有取回来,导致线程阻塞。如果请求DB的网络和DB的性能稳定,这种情况对系统的影响是不大的,但是假如取DB的时候网络发生抖动,或者DB发生慢查询就会导致整个系统的响应时间变慢。

为此,我们希望DB取号段的过程能够做到无阻塞,不需要在DB取号段的时候阻塞请求线程,即当号段消费到某个点时就异步的把下一个号段加载到内存中。而不需要等到号段用尽的时候才去更新号段。这样做就可以很大程度上的降低系统的TP999指标。详细实现如下图所示:

采用双buffer的方式,Leaf服务内部有两个号段缓存区segment。当前号段已下发10%时,如果下一个号段未更新,则另启一个更新线程去更新下一个号段。当前号段全部下发完后,如果下个号段准备好了则切换到下个号段为当前segment接着下发,循环往复。

  • 每个biz-tag都有消费速度监控,通常推荐segment长度设置为服务高峰期发号QPS的600倍(10分钟),这样即使DB宕机,Leaf仍能持续发号10-20分钟不受影响。
  • 每次请求来临时都会判断下个号段的状态,从而更新此号段,所以偶尔的网络抖动不会影响下个号段的更新。

这个版本代码在线上稳定运行了半年左右,Leaf又遇到了新的问题:

  1. 号段长度始终是固定的,假如Leaf本来能在DB不可用的情况下,维持10分钟正常工作,那么如果流量增加10倍就只能维持1分钟正常工作了。
  2. 号段长度设置的过长,导致缓存中的号段迟迟消耗不完,进而导致更新DB的新号段与前一次下发的号段ID跨度过大。

Leaf动态调整Step

假设服务QPS为Q,号段长度为L,号段更新周期为T,那么Q * T = L。最开始L长度是固定的,导致随着Q的增长,T会越来越小。但是Leaf本质的需求是希望T是固定的。那么如果L可以和Q正相关的话,T就可以趋近一个定值了。所以Leaf每次更新号段的时候,根据上一次更新号段的周期T和号段长度step,来决定下一次的号段长度nextStep:

  1. T < 15min,nextStep = step * 2
  2. 15min < T < 30min,nextStep = step
  3. T > 30min,nextStep = step / 2

Leaf高可用容灾

对于第三点“DB可用性”问题,我们目前采用一主两从的方式,同时分机房部署,Master和Slave之间采用半同步方式同步数据。同时使用公司Atlas数据库中间件(已开源,改名为DBProxy)做主从切换。当然这种方案在一些情况会退化成异步模式,甚至在非常极端情况下仍然会造成数据不一致的情况,但是出现的概率非常小。如果你的系统要保证100%的数据强一致,可以选择使用“类Paxos算法”实现的强一致MySQL方案,如MySQL 5.7前段时间刚刚GA的MySQL Group Replication。但是运维成本和精力都会相应的增加,根据实际情况选型即可。

Leaf监控

针对服务自身的监控,Leaf提供了Web层的内存数据映射界面,可以实时看到所有号段的下发状态。比如每个号段双buffer的使用情况,当前ID下发到了哪个位置等信息都可以在Web界面上查看。

Leaf-snowflake方案

简介

Leaf-snowflake可以解决以下问题:

1.解决雪花算法的问题

    雪花算法强依赖机器时钟,如果机器上时钟回拨,会导致发号重复或者服务会处于不可用状态。

2.解决Leaf-segment的ID可计算问题

Leaf-segment方案可以生成趋势递增的ID,同时ID号是可计算的,不适用于订单ID生成场景,比如竞对在两天中午12点分别下单,通过订单id号相减就能大致计算出公司一天的订单量,这个是不能忍受的。

Leaf的Snowflake模式与原生Snowflake模式完全一致,都是采用1+41+10+12的模式,且不可配置,除非修改源码

Leaf-snowflake启动步骤 

对于workerID的分配,当服务集群数量较小的情况下,完全可以手动配置。Leaf服务规模较大,动手配置成本太高。所以使用Zookeeper持久顺序节点的特性自动对snowflake节点配置wokerID。Leaf-snowflake是按照下面几个步骤启动的:

  1. 启动Leaf-snowflake服务,连接Zookeeper,在leaf_forever父节点下检查自己是否已经注册过(是否有该顺序子节点)。
  2. 如果有注册过直接取回自己的workerID(zk顺序节点生成的int类型ID号),启动服务。
  3. 如果没有注册过,就在该父节点下面创建一个持久顺序节点,创建成功后取回顺序号当做自己的workerID号,启动服务。

高可用(Zookeeper)

除了每次会去ZK拿数据以外,也会在本机文件系统上缓存一个workerID文件。当ZooKeeper出现问题,恰好机器出现问题需要重启时,能保证服务能够正常启动。这样做到了对三方组件的弱依赖。一定程度上提高了SLA。

时钟回退问题

因为这种方案依赖时间,如果机器的时钟发生了回拨,那么就会有可能生成重复的ID号,需要解决时钟回退的问题。

参见上图整个启动流程图,服务启动时首先检查自己是否写过ZooKeeper leaf_forever节点:

  1. 若写过,则用自身系统时间与leaf_forever/self节点记录时间做比较,若小于leafforever/{self}节点记录时间做比较,若小于leaf_forever/self节点记录时间做比较,若小于leaff​orever/{self}时间则认为机器时间发生了大步长回拨,服务启动失败并报警。
  2. 若未写过,证明是新服务节点,直接创建持久节点leaf_forever/${self}并写入自身系统时间,接下来综合对比其余Leaf节点的系统时间来判断自身系统时间是否准确,具体做法是取leaf_temporary下的所有临时节点(所有运行中的Leaf-snowflake节点)的服务IP:Port,然后通过RPC请求得到所有节点的系统时间,计算sum(time)/nodeSize。
  3. 若abs( 系统时间-sum(time)/nodeSize ) < 阈值,认为当前系统时间准确,正常启动服务,同时写临时节点leaf_temporary/${self} 维持租约。
  4. 否则认为本机系统时间发生大步长偏移,启动失败并报警。
  5. 每隔一段时间(3s)上报自身系统时间写入leaf_forever/${self}。

由于强依赖时钟,对时间的要求比较敏感,在机器工作时NTP同步也会造成秒级别的回退,建议可以直接关闭NTP同步。要么在时钟回拨的时候直接不提供服务直接返回ERROR_CODE,等时钟追上即可。或者做一层重试,然后上报报警系统,更或者是发现有时钟回拨之后自动摘除本身节点并报警,如下:

// synchronized保证线程安全问题
public synchronized Result get(String key) {
    long timestamp = System.currentTimeMillis();
    // 如果时钟发生了回拨
    if (timestamp < lastTimestamp) {
        long offset = lastTimestamp - timestamp;
        if (offset <= 5) {
            // 如果回拨的时间在5ms以内,那么直接等待
            wait(offset << 1);
            timestamp = System.currentTimeMillis();
        } else {
            // 如果超过5ms,那么直接抛出异常
            return new Result(-3, Status.EXCEPTION);
        }
    }
    // 如果和上一次请求是同一毫秒以内,那么sequence+1
    if (lastTimestamp == timestamp) {
        sequence = (sequence + 1) & sequenceMask;
        if (sequence == 0) {
            //sequence为0的时候表示这一毫秒请求量超过1024,那么自旋等待下一毫秒
            sequence = RANDOM.nextInt(100);
            timestamp = tilNextMillis(lastTimestamp);
        }
    } else {
        //如果是新的一毫秒,那么从一个[0, 100)的随机数开始,之所以不是每次都从0开始,
        //是因为防止低并发时获取的唯一ID都是偶数,如果用唯一ID作为分片键,可能导致数据倾斜
        sequence = RANDOM.nextInt(100);
    }
    lastTimestamp = timestamp;
    // 通过位运算计算此次生成的唯一ID
    long id = ((timestamp - twepoch) << timestampLeftShift) | (workerId << workerIdShift) | sequence;
    return new Result(id, Status.SUCCESS);
}

从上线情况来看,在2017年闰秒出现那一次出现过部分机器回拨,由于Leaf-snowflake的策略保证,成功避免了对业务造成的影响。

落地

略。推荐使用百度UID来落地。

0

评论0

请先

显示验证码
没有账号?注册  忘记密码?

社交账号快速登录